Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 204: 108081, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38458349

RESUMO

Epizootics of the entomopathogenic fungus Metarhizium rileyi regulate lepidopteran populations in soybean, cotton, and peanut agroecosystems to the point that insecticide applications could be unnecessary. However, the contribution and how different strains operate during the epizootic are unknown. Several unanswered questions remain: 1. How many genotypes of M. rileyi are present during an epizootic? 2. Which genotype is the most common among them? 3. Are the genotypes involved in annual epizootics at the same location the same? Therefore, the development of molecular markers to accurately identify these genotypes is very important to answer these questions. SSR primers were designed by prospecting in silico to discriminate genotypes and infer the genetic diversity of M. rileyi isolates from the collection kept at Embrapa Soybean. We tested 13 SSR markers on 136 isolates to identify 43 clones and 12 different genetic clusters, with genetic diversity ranging from Hs = 0.15 (cluster I) to Hs = 0.41 (cluster IV) and an average diversity of 0.24. No clusters were categorically distinguished based on hosts or geographical origin using Bayesian clustering analysis. Nonetheless, some clusters comprised most of the isolates with a common geographic origin; for example, cluster VIII was mainly composed of isolates from Central-western Brazil, cluster II from Southern Brazil, and cluster XII from Quincy, Northern Florida, in the United States. Underrepresented regions (few isolates) from Pacific Island nations of Japan, the Philippines, and Indonesia (specifically from Java) were placed into clusters IX and X. Although the analyzed isolates displayed evidence of clonal structure, the genetic diversity indices suggest a potential for the species to adapt to different environmental conditions.

2.
PeerJ ; 9: e10782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986974

RESUMO

Anthracnose is a disease caused by Colletotrichum spp., one of the world's most damaging sweet and chili pepper pathogens, especially in tropical and subtropical regions. In the state of Rio de Janeiro, anthracnose is one of the main obstacles for pepper crops. However, to date no research has focused on the identification and characterization of the pathogen, which is fundamental to understand the scope of the disease in the state. Thus, the correct identification of the fungal species and pathogenicity studies can provide important support for disease management and control, apart from identifying possible resistance sources for exploitation in peppers breeding programs. In this study, 11 Colletotrichum isolates were collected from peppers with typical symptoms in the Rio de Janeiro state. These isolates were characterized based on morpho-cultural characteristics and sequencing data from five regions (ITS, ACT, CAL, ß-TUB and GAPDH), and the genetic variability was estimated by AFLP markers. Simultaneously, microscopy images of the colonization by the fungal species on unripe Capsicum annuum fruits were taken. Pathogenicity was tested and resistance sources were sought by means of infection of ripe and unripe fruits of 50 Capsicum baccatum accessions. The resulting data showed that all isolates belong to Colletotrichum scovillei specie. About the pathogenicity of Capsicum baccatum, differentiated, stage-specific responses, with higher resistance of ripe fruits were recorded. In addition, four possible sources of Colletotrichum scovillei resistance were detected among the tested accessions. The combination of these data can contribute to future studies on the interaction of Colletotrichum scovillei-Capsicum spp., a research line that is still unexploited in the main areas of this anthracnose fungus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...